Model | Accuracy | Sensitivity | PPV | Brier | AUC (95% CI) |
---|
Logistic regression | 0.741 | 0.513 | 0.700 | 0.179 | 0.780 (0.775–0.784) |
XGBOOST | 0.740 | 0.514 | 0.699 | 0.179 | 0.781 (0.779–0.783) |
Random forest | 0.732 | 0.504 | 0.683 | 0.181 | 0.775 (0.770–0.778) |
SVM | 0.742 | 0.500 | 0.709 | 0.178 | 0.782 (0.776–0.786) |
CNN | 0.764 | 0.581 | 0.722 | 0.161 | 0.804 (0.782–0.809) |
- XGBOOST Extreme gradient boosting, SVM Support vector machine, CNN Convolutional neural network, PPV Positive predictive value, CI Confidence interval, parameter optimization: RF (max_depth = 10), SVM (kernel = linear), XGBOOST (n_estimators = 300, max_depth = 4, learning_rate = 0.01, gamma = 0.3, subsample = 0.7, colsample_bytree = 0.7), CNN (learning_rate = 0.003, epochs = 200, batch_size = 128)